contents


continuous-time

  • the physical world is assumed to be continuous-time
    • analog is continuous-time
  • the computer world is discrete-time

continuous-time-conversion

fig: continuous-time world vs. discrete-time world metaphor

analog world

  • calculus
  • distributions
  • systems theory
  • electronics

  • mathematical parallel:
    • real-values time: \(t\) (sec)
    • functions: \(x(t) \in L_2(\mathbb{R}) \)
    • frequency: \( \Omega \in \mathbb{R} (\frac{rad}{sec}) \)
      • unlimited, not bound
    • fourier-transform: \( L_2(\mathbb{R}) \mapsto L_2(\mathbb{R}) \)

discrete world

  • arithmetic
  • combinatorics
  • computer science
  • dsp

  • mathematical parallel:
    • countable integer index: \(n\)
    • sequences: \( x[n] \in \ell_2(\mathbb{Z}) \)
    • frequency: \( \omega \in [-\pi,\pi] \)
      • bounded
    • dtft: \( \ell_2(\mathbb{Z}) \mapsto L_2([-\pi,\pi]) \)

analog-analog conversions

  • dsp is used for analog-analog transform with intermediate digital processing
  • example:
    • mp3
    • digital photography
  • process input \(x(t)\) and output \(y(t)\) are both continuous-time
  • process intermediate processing in on discrete sequences \(x[n], y[n]\)
  • usually a storage, transport and reproduction process

digital-analog conversions

  • there can be conversion from discrete-time to analog-time done with dsp
  • examples:
    • computer graphics
    • video games
  • process input \(x[n] \) is discrete-time
  • process output \(y(t)\) is continuous-time
  • intermediate processing in on discrete sequences \( x[n], y[n] \)

  • usually a synthesis process

analog-digital conversions

  • there can be conversion from discrete-time to analog-time done with dsp
  • examples:
    • control systems
    • measurement systems
    • surveillance applications
  • process input \(x(t)\) is continuous-time
  • process output \(y[n] \) is discrete-time
  • intermediate processing in on discrete sequences \( x[n], y[n] \)

  • usually a monitoring and reactive process

conversion cycle

continuous-time-conversion

fig: \(x(t)\) - continuous-time; \(x[n]\) - discrete-time

continuous-time dsp

  • time: real variable \(t\)
  • signal \(x(t)\) - complex function of a real variable
  • finite energy: \( x(t) \in L_2(\mathbb{R}) \)
  • inner product in \(L_2(\mathbb{R})\) \[ \langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x^{*}(t)y(t)dt \]
  • energy: \[ \vert\vert x(t) \vert\vert^2 = \langle x(t), x(t) \rangle \]
  • fourier-transform: \( L_2(\mathbb{R}) \mapsto L_2(\mathbb{R}) \)
analog LTI filters

analog-LTI-filter

fig: block diagram of an analog LTI

  • these are the analog parallel of discrete LTI filters

  • here, \[ \begin{align} y(t) & = (x * h)(t) \\
    & = \langle h^*(t - \tau) , x(\tau) \rangle \\
    & = \int_{\infty}^{\infty} x(\tau) h(t- \tau) d \tau \\
    \end{align} \]

continuous-time fourier transform (CTFT)
  • in discrete-time max angular frequency is \(\pm \pi\)
  • in continuous-time no upper bound to frequency \( \omega \in \mathbb{R} \)
  • however, the concept of breaking a function down into component sines is still the same \[ \begin{align} & \text{forward fourier-transform} \\
    X(j\Omega) & = \int_{\infty}^{\infty} x(t) e^{-j\Omega t} dt & \leftarrow \text{not periodic} \\
    \\
    & \text{inverse fourier-transform} \\
    x(t) & = \frac{1}{2\pi} \int_{\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega & \\
    \end{align} \]
real-world frequency
  • \( \Omega \) is expressed in \( \frac{rad}{s} \)
  • \( F = \frac{\Omega}{2\pi} \) expressed in Hertz \( \left( \frac{1}{s} \right) \)
  • period \( T = \frac{1}{F} = \frac{2\pi}{\omega} \)
example

analog-gaussian-signal

fig: gaussian signal (analog)

  • the fourier transform of above gaussian signal as a bell shaped magnitude curve
    • rescaled appropriately

analog-gaussian-fourier-trans-mag

fig: gaussian signal fourier transform magnitude

continuous-time convolution
  • for following filter action

analog-LTI-filter

fig: block diagram of an analog LTI

  • the filter output fourier transform is scaling the input fourier transform with the frequency response of the filter
    • frequency response is nothing but the fourier transform of the filter impulse response

\[ Y(j\Omega) = X(j\Omega)H(j\Omega) \]

bandlimited functions

  • \(\Omega_N\)-bandlimitedness \[ X( j\Omega ) = 0 \text{ for } \vert \Omega \vert > \Omega_N \]

example - continuous-time fourier transform

  • a bandlimited rect function

continuous-time-bandlimited-function

fig: prototypical bandlimited function

fourier transfer

\[ \begin{align} \Phi(j\Omega) & = G \text{ } rect \Bigg ( \frac{\Omega}{2\Omega_N} \Bigg ) \\
\
\varphi(t) & = G \text{ } \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(j\Omega)e^{j\Omega t} d\Omega \\
& = G \frac{\Omega_N}{\pi} sinc \Bigg ( \frac{\Omega_N}{\pi} t \Bigg ) \\
\end{align} \]

  • normalization: \( G = \frac{\pi}{\Omega_N} \)
  • total bandwidth: \( \Omega_B = 2\pi\Omega_N \)
  • define: \( T_s = \frac{2\pi}{\Omega_B} = \frac{\pi}{\Omega_N} \)

continuous-time-bandlimited-function

fig: prototypical bandlimited function

  • with define substitutions \[ \begin{align} \Phi(j\Omega) & = \frac{\pi}{\Omega_N} \text{ } rect \Bigg ( \frac{\Omega}{2\Omega_N} \Bigg ) \\
    \
    \varphi(t) & = sinc \Bigg ( \frac{t}{T_s} \Bigg ) \\
    \end{align} \]

continuous-time-bandlimited-function-with-substitution

fig: prototypical bandlimited function with substitution

continuous-time-bandlimited-function-fourier-transform

fig: fourier transform of prototypical bandlimited function


references