[QMSE] W02 - Plane Wave and Interference
simple harmonic oscillation
\( \frac{d^2 y}{d t^2} = - \omega^2 y \)
- where:
- \( \omega = \sqrt{\frac{K}{M}} = 2\pi f\): angular frequency
- \( y \): displacement
- \( M \): mass
- \( K \): spring constant
- \( t \): time variable
wave equation
\( \frac{\partial^2 y}{d z^2} - \frac{1}{v^2} \frac{\partial^2 y}{d t^2} = 0 \)
- where
- \( v = \sqrt{\frac{T}{\rho}} \) wave velocity
- \(T\): tension in string,
- influenced by mass and acceleration due to field potential
- \(\rho = \frac{M}{L}\): density of string
- \(z\): spatial variable
- \(t\): time variable
- this is for a wave in 1D over time
solution
- the solutions to this equations are of the form
- \(f(z-vt)\): wave moving to right
- \(g(z+vt)\): wave moving left
generalizing wave equation to 3D
- applying gradient operator to 1D wave equation gives
- \( \nabla^2 \phi - \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = 0 \)
- where:
- \( \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \)
- 3D wave equation with unit vectors \( \hat{x}, \hat{y}, \hat{z} \) becomes
- \( \nabla^2 = \nabla \cdot \nabla \)
- \( \nabla^2 = \left( \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \cdot \left( \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \)
plane wave solutions
- a (monochromatic) plane wave is given by
-
\( \exp{\left[ i(\textbf{k}\cdot\textbf{r} - \omega t) \right]} \)
-
where
-
\( \textbf{r} = x \hat{ \textbf{x} } + y \hat{ \textbf{y} } + z \hat{ \textbf{z} } \)
-
\( \textbf{k} = k_x \hat{ \textbf{x} } + k_y \hat{ \textbf{y} } + k_z \hat{ \textbf{z} } \)
- this is the wave vector
-
-
- a plane wave is a solution to the 3D wave equation when
- \( k = \frac{\omega}{t} \)
gradient operator for space partials of plane wave
- first partial:
- \( \nabla \exp{ \left[ i(\textbf{k} \cdot \textbf{r} - \omega t ) \right] } = i \textbf{k}\exp{\left[ i (\textbf{k} \cdot\textbf{r} - \omega t) \right]} \)
- second partial:
- \( \nabla^2 \exp{ \left[ i(\textbf{k} \cdot \textbf{r} - \omega t ) \right] } = -k^2 \exp{ \left[ i (\textbf{k} \cdot \textbf{r} - \omega t) \right] } \)
- where: \( k^2 = k_x^2 + k_y^2 + k_z^2 \)
time partials of plane wave
- \( \frac{\partial^2}{\partial t^2} \exp{ \left[ i (\textbf{k} \cdot \textbf{r} - \omega t) \right]} = -\omega^2 \exp{\left[ i (\textbf{k} \cdot \textbf{t}) - \omega t \right]} \)
verify solution plane wave in 3D wave
- 3D wave:
- \( \nabla^2 \phi - \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = 0 \)
-
plugging in space and time partials of plane wave:
-
\( \nabla^2 \exp{\left[ i (\textbf{k}\cdot\textbf{r} - \omega t) \right]} - \frac{1}{c^2} \frac{\partial^2 \exp{\left[ i (\textbf{k}\cdot\textbf{r} - \omega t) \right]}}{\partial t^2} = 0 \)
-
\( (-k^2 + \frac{\omega^2}{c^2}) \exp{ \left[ i (\textbf{k} \cdot \textbf{r} - \omega t) \right] } = 0 \)
-
\( ( -k^2 + k^2) \exp{ \left[ i (\textbf{k} \cdot \textbf{r} - \omega t) \right] } = 0 \)
-
\( 0 \cdot \exp{ \left[ i (\textbf{k} \cdot \textbf{r} - \omega t) \right] } = 0 \)
-
conclusion
- \( \exp{ \left[ i (\textbf{k} \cdot \textbf{r} - \omega t ) \right] } \) is a solution for any vector direction \( \textbf{k} \) provided \( k = \frac{\omega}{c} \)
- where: \( k^2 = k_x^2 + k_y^2 + k_z^2 \)
wave interference
- consider a plane wave with wave-vector \(\textbf{k}_1 \)
- which is a solution to the 3D wave equation
- consider a second plane \(\textbf{k}_2 \)
- which is a also a 3D wave equation solution
- now, the linear combination of these two waves is a solution
- the two waves \(\textbf{k}_1 \) and \(\textbf{k}_2 \) show interference