[FMQM] W00 - Symbols and Algebra Notation
arithmetic symbols
- ’=’: Equals (left hand side is equal to the right hand side)
- ”+”: Addition or “plus”
- ”-“: Subtraction, “minus”
- “x” or “.”: Multiplication
- “÷” or “/”: Division
- quotient:
- \( \frac{numerator}{denominator} = \frac{dividend}{divisor} \)
relational symbols
- ”\( \equiv \)”: “equivalent to” \( x/y \equiv \frac{x}{y}\)
- a little more than equal to,
- inclusive of the notation
- ”\(\simeq \)”: “is approximately equal to “ \( \frac{1}{3} \simeq 0.33 \)
- a good numerical approximation for instance
- ”\( \propto \)”: “is proportional to” \( ax \propto x \)
- ”>”: “greater than”
- ”\( \geq \)”: “greater than or equal to”
- ”<”: “less than”
- ”\( \leq \)”: “less than or equal to”
- ”\( \gg \)”: “much greater than”
- ”\( \ll \)”: “much lesser than”
greek characters
… | \( \alpha \): a | “alpha” |
… | \( \beta \): b | “bay-ta” |
\( \Gamma \): G | \( \gamma \): g | “gamma” |
\( \Delta \): D | \( \delta \): d | “delta” |
… | \( \epsilon \): e | “epsilon” |
… | \( \zeta \): z | “zeta” |
… | \( \eta \): second type of e (h) | “eta” |
… | \( \theta \): th (q) | “theta” |
… | \( \kappa \): k | “kappa” |
\( \Lambda \): L | \( \lambda \): l | “lambda” |
… | \( \mu \): m | “mu” |
… | \( \nu \): n | “nu” |
\( \Xi \): X | \( \xi \): x | “xi” |
\( \Pi \): P | \( \pi \): p | “pi” |
… | \( \rho \): r | “rho” |
\( \Sigma \): S | \( \sigma \): s | “sigma” |
… | \( \tau \): t | “tau” |
\( \Phi \): ph | \( \phi \): ph (f) | “phi” |
… | \( \chi \): ch | “chi” |
\( \Psi \): psi | \( \psi \): psy | “psy” |
\( \Omega \): O | \( \omega \): o | “omega” |
algebra notations
multiplication
- \( 2 \times 3 = 6 \)
- \( a \times b = c \)
- \( ab = c \): implicit multiplication
- parenthesis for grouping
- \( 2 \times ( 3 \times 4 ) = 2 \times 7 = 14 \)
- \( 2 \times [ 3 \times 4 ] = 2 \times 7 = 14 \)
- \( 2 \times { 3 \times 4 } = 2 \times 7 = 14 \)
associative property
- operations are associative if grouping does not matter
- addition:
- \( (a+b)+c = a+(b+c) \)
- multiplication:
- \( (a \times b) \times c = a \times (b \times c) \)
- division:
- \( \frac{(\frac{8}{4})}{2} = \frac{2}{2} = 1 \)
- \( \frac{8}{(\frac{4}{2})} = \frac{8}{2} = 4 \)
distributive property
- property where removing parenthesis distributes the operation
- multiplication over addition:
- \( a \times ( b + c ) = a \times b + a \times c \)
- addition is not distributive over multiplication
- \( 3 + (2 \times 5) = 13 \neq (3 + 2) \times (3 + 5) = 40 \)
commutative property
- property where the order can be switched around
- addition: \( a + b = b + a \)
- multiplicative: \( a \times b = b \times a \)
- subtraction and division are not commutative
- subtraction: \( 5 - 3 = 2 \neq 3 - 5 = -2 \)
algebra notation and functions
parenthesis and functions
- a function is something that relates or “maps”
- one set of values to another
- takes an argument variable to output a value dependent on that argument
- \( f(x) = x + \frac{1}{4} \)
- conventionally we say “f of x” when we read \(f(x)\)
- not “f times x”
- only round brackets ‘()’ are used for arguments,
- not square ‘[]’ or flower brackets ‘{}’
- sometimes the brackets are simply dropped
- like trigonometric functions
- \( sin \theta \equiv sin (\theta) \)
trigonometry
-
derived from angles in a right angled triangle
- \( \cos \theta = \frac{1}{\sin \theta} \)
- \( \sec \theta = \frac{1}{\cos \theta} \)
-
\( \cot \theta = \frac{1}{\tan \theta} \)
- inverse sine functions:
- outputs angle taking in a ratio
- example: \( \sin^{-1} \theta \neq \frac{1}{\sin \theta}\)
- also: \( \sin^{-1} \theta = \arcsin \)
- squared trigonometric functions:
- \( \sin^2 \theta = \sin \theta \times \sin \theta = (\sin \theta)^2 \neq \sin{ (\sin \theta) } \)