arithmetic symbols

  • ’=’: Equals (left hand side is equal to the right hand side)
  • ”+”: Addition or “plus”
  • ”-“: Subtraction, “minus”
  • “x” or “.”: Multiplication
  • “÷” or “/”: Division
  • quotient:
    • numeratordenominator=dividenddivisor

relational symbols

  • ”: “equivalent to” x/yxy
    • a little more than equal to,
    • inclusive of the notation
  • ”: “is approximately equal to “ 130.33
    • a good numerical approximation for instance
  • ”: “is proportional to” axx
  • ”>”: “greater than”
  • ”: “greater than or equal to”
  • ”<”: “less than”
  • ”: “less than or equal to”
  • ”: “much greater than”
  • ”: “much lesser than”

greek characters

α: a “alpha”
β: b “bay-ta”
Γ: G γ: g “gamma”
Δ: D δ: d “delta”
ϵ: e “epsilon”
ζ: z “zeta”
η: second type of e (h) “eta”
θ: th (q) “theta”
κ: k “kappa”
Λ: L λ: l “lambda”
μ: m “mu”
ν: n “nu”
Ξ: X ξ: x “xi”
Π: P π: p “pi”
ρ: r “rho”
Σ: S σ: s “sigma”
τ: t “tau”
Φ: ph ϕ: ph (f) “phi”
χ: ch “chi”
Ψ: psi ψ: psy “psy”
Ω: O ω: o “omega”

algebra notations

multiplication

  • 2×3=6
  • a×b=c
    • ab=c: implicit multiplication
  • parenthesis for grouping
    • 2×(3×4)=2×7=14
    • 2×[3×4]=2×7=14
    • 2×3×4=2×7=14

associative property

  • operations are associative if grouping does not matter
  • addition:
    • (a+b)+c=a+(b+c)
  • multiplication:
    • (a×b)×c=a×(b×c)
  • division:
    • (84)2=22=1
    • 8(42)=82=4

distributive property

  • property where removing parenthesis distributes the operation
  • multiplication over addition:
    • a×(b+c)=a×b+a×c
  • addition is not distributive over multiplication
    • 3+(2×5)=13(3+2)×(3+5)=40

commutative property

  • property where the order can be switched around
  • addition: a+b=b+a
  • multiplicative: a×b=b×a
  • subtraction and division are not commutative
    • subtraction: 53=235=2

algebra notation and functions

parenthesis and functions

  • a function is something that relates or “maps”
    • one set of values to another
    • takes an argument variable to output a value dependent on that argument
    • f(x)=x+14
  • conventionally we say “f of x” when we read f(x)
    • not “f times x”
  • only round brackets ‘()’ are used for arguments,
    • not square ‘[]’ or flower brackets ‘{}’
  • sometimes the brackets are simply dropped
    • like trigonometric functions
    • sinθsin(θ)

trigonometry

  • derived from angles in a right angled triangle trigonometry

  • cosθ=1sinθ
  • secθ=1cosθ
  • cotθ=1tanθ

  • inverse sine functions:
    • outputs angle taking in a ratio
    • example: sin1θ1sinθ
    • also: sin1θ=arcsin
  • squared trigonometric functions:
    • sin2θ=sinθ×sinθ=(sinθ)2sin(sinθ)