arithmetic symbols

  • ’=’: Equals (left hand side is equal to the right hand side)
  • ”+”: Addition or “plus”
  • ”-“: Subtraction, “minus”
  • “x” or “.”: Multiplication
  • “÷” or “/”: Division
  • quotient:
    • \( \frac{numerator}{denominator} = \frac{dividend}{divisor} \)

relational symbols

  • ”\( \equiv \)”: “equivalent to” \( x/y \equiv \frac{x}{y}\)
    • a little more than equal to,
    • inclusive of the notation
  • ”\(\simeq \)”: “is approximately equal to “ \( \frac{1}{3} \simeq 0.33 \)
    • a good numerical approximation for instance
  • ”\( \propto \)”: “is proportional to” \( ax \propto x \)
  • ”>”: “greater than”
  • ”\( \geq \)”: “greater than or equal to”
  • ”<”: “less than”
  • ”\( \leq \)”: “less than or equal to”
  • ”\( \gg \)”: “much greater than”
  • ”\( \ll \)”: “much lesser than”

greek characters

\( \alpha \): a “alpha”
\( \beta \): b “bay-ta”
\( \Gamma \): G \( \gamma \): g “gamma”
\( \Delta \): D \( \delta \): d “delta”
\( \epsilon \): e “epsilon”
\( \zeta \): z “zeta”
\( \eta \): second type of e (h) “eta”
\( \theta \): th (q) “theta”
\( \kappa \): k “kappa”
\( \Lambda \): L \( \lambda \): l “lambda”
\( \mu \): m “mu”
\( \nu \): n “nu”
\( \Xi \): X \( \xi \): x “xi”
\( \Pi \): P \( \pi \): p “pi”
\( \rho \): r “rho”
\( \Sigma \): S \( \sigma \): s “sigma”
\( \tau \): t “tau”
\( \Phi \): ph \( \phi \): ph (f) “phi”
\( \chi \): ch “chi”
\( \Psi \): psi \( \psi \): psy “psy”
\( \Omega \): O \( \omega \): o “omega”

algebra notations

multiplication

  • \( 2 \times 3 = 6 \)
  • \( a \times b = c \)
    • \( ab = c \): implicit multiplication
  • parenthesis for grouping
    • \( 2 \times ( 3 \times 4 ) = 2 \times 7 = 14 \)
    • \( 2 \times [ 3 \times 4 ] = 2 \times 7 = 14 \)
    • \( 2 \times { 3 \times 4 } = 2 \times 7 = 14 \)

associative property

  • operations are associative if grouping does not matter
  • addition:
    • \( (a+b)+c = a+(b+c) \)
  • multiplication:
    • \( (a \times b) \times c = a \times (b \times c) \)
  • division:
    • \( \frac{(\frac{8}{4})}{2} = \frac{2}{2} = 1 \)
    • \( \frac{8}{(\frac{4}{2})} = \frac{8}{2} = 4 \)

distributive property

  • property where removing parenthesis distributes the operation
  • multiplication over addition:
    • \( a \times ( b + c ) = a \times b + a \times c \)
  • addition is not distributive over multiplication
    • \( 3 + (2 \times 5) = 13 \neq (3 + 2) \times (3 + 5) = 40 \)

commutative property

  • property where the order can be switched around
  • addition: \( a + b = b + a \)
  • multiplicative: \( a \times b = b \times a \)
  • subtraction and division are not commutative
    • subtraction: \( 5 - 3 = 2 \neq 3 - 5 = -2 \)

algebra notation and functions

parenthesis and functions

  • a function is something that relates or “maps”
    • one set of values to another
    • takes an argument variable to output a value dependent on that argument
    • \( f(x) = x + \frac{1}{4} \)
  • conventionally we say “f of x” when we read \(f(x)\)
    • not “f times x”
  • only round brackets ‘()’ are used for arguments,
    • not square ‘[]’ or flower brackets ‘{}’
  • sometimes the brackets are simply dropped
    • like trigonometric functions
    • \( sin \theta \equiv sin (\theta) \)

trigonometry

  • derived from angles in a right angled triangle trigonometry

  • \( \cos \theta = \frac{1}{\sin \theta} \)
  • \( \sec \theta = \frac{1}{\cos \theta} \)
  • \( \cot \theta = \frac{1}{\tan \theta} \)

  • inverse sine functions:
    • outputs angle taking in a ratio
    • example: \( \sin^{-1} \theta \neq \frac{1}{\sin \theta}\)
    • also: \( \sin^{-1} \theta = \arcsin \)
  • squared trigonometric functions:
    • \( \sin^2 \theta = \sin \theta \times \sin \theta = (\sin \theta)^2 \neq \sin{ (\sin \theta) } \)