[FMQM] W00 - Imaginary and Complex Numbers
- no real number multiplied by itself
- gives a negative result
- no real square root of a negative number
- \( (-2) \times (-2) = 4 \)
- so define an entity designating \( \sqrt{-1} \)
- \( i = \sqrt{-1} \)
- \( i^2 = -1 \)
- \( (-i)^2 = -1 \)
- in engineering, \( j = \sqrt{-1} \)
- to avoid confusing with current symbol \(i\)
imaginary and complex numbers
- some imaginary numbers
- \( 4i \)
- \( 3.74i \)
- \( i\pi \)
- put \( i \) after numbers but before variables and constants
- complex numbers are imaginary and real numbers together
- general form: \( g = a + ib \)
- real part: \( a = Re(g) \)
- imaginary part: \( b = Im(g) \)
complex conjugate: a complex number’s imaginary part sign reversed
- given complex number \( g = a + ib \)
- complex conjugate is \( g^* = a + ib \)
- every \(i\)’s sign must be reversed
- multiplication of a complex number with its complex conjugate gives a positive number
- the result is called the modulus of the complex number
- \( \lvert g \rvert^2 = g^{*} g = g g^{*} \)
- \( \lvert g \rvert = +\sqrt{\lvert g\rvert^2} \)
- \( \lvert g \rvert = \sqrt{a^2 + b^2} \)
complex number identities
- \( \lvert g \rvert^2 = g g^{*} = (a+ib)(a-ib) \)
- \( = a^2 - iab + iba - i^2b^2 = a^2 + b^2 \)
- \( \lvert g \rvert^2 = a^2 + b^2 \)
- \( g = \frac{1}{c+id} = \frac{c}{c^2 + d^2} -i\frac{d}{c^2 + d^2} \)
- reciprocal of a complex number can be re-arranged into a complex number
euler’s formula and the complex plane
euler’s formula
- \( \exp{(i\theta)} = \cos \theta + i \sin \theta \)
- this notation: major reason for use of complex numbers in engineering
- exponentials replace sines and cosines
- simple power additions replace cumbersome trigonometric algebra
- note that: \( \exp{(-i\theta)} \equiv \exp{(i[-\theta])} \)
- extending this to euler’s formula
- \( \exp{(-i\theta)} = \cos{(-\theta)} + i \sin{(-\theta)} \)
- extending this to euler’s formula
- complex conjugate:
- \( [\exp{(i\theta)}]^* = \exp{(-i\theta)} \)
- modulus:
- \( \exp{i\theta}\exp{(-i\theta)} = \exp{(i\theta - i\theta)} = \exp{(0)} = 1\)
polar form of complex number
- \( g = \lvert g \rvert \exp{(i\theta)} \)
complex plane - argand diagram
- not a physical plane
- a mathematical plane, similar to the \(x-y\) plane
- real axis: horizontal line
- imaginary axis: vertical line
- any complex number
- \( g = a + ib = \lvert g \rvert \exp{(i\theta)} \)
- \( \theta = \arg{(g)}\)
multiplication in polar form
- to multiply two complex numbers
- multiply moduli
- add angles
- example:
- \( g = \lvert g \rvert \exp{(i\theta)} \)
- \( h = \lvert h \rvert \exp{(i\phi)} \)
- \( g \times h = \lvert g \rvert \lvert h \rvert \exp{(i[\theta + \phi])} \)
nth roots of unity
- the number \( \exp{\left(\frac{2\pi i}{n}\right)} \)
- when raised to the nth power is 1 (unity)
- \( \left[\exp{\left( \frac{2\pi i}{n} \right) } \right]^n = \exp{ \left( \frac{2\pi i}{n} \right) } = \exp{(2\pi i)} = 1\)
- many different complex numbers give 1 when raised to nth power
- this specific is the nth root: \( \sqrt[n]{1} = \exp{ \left( \frac{2\pi i}{n} \right)} \)
standard results for complex numbers
- \( (gh)^{ * } = g^{ * }h^{ * } \)
- \( \left( \frac{1}{gh} \right)^{*} = \frac{1}{ g^{*} h^{*} } \)
- \( \left( \frac{g}{h} \right)^{*} = \frac{g^{*}}{h^{*}} \)