young’s slits

  • two slits at a distance s are made in a mask
    • then a wave is passed through a slit

young-double-slit

wave-interference-pattern

dual-split-experiment

  • for large waves:
    • the waves are approximately uniformly “bright”
      • using exponential waves for convenience
    • ψs(x)exp[ik(xs2)2+z02]+exp[ik(x+s2)2+z02]
  • approximate formulas for the distance gives
    • ψs(x)exp(iα)(exp[ik(sx2z0)]+exp[ik(sx2z0)])
    • α=k(z0+x22z0+s28z0)
  • applying expcos relationship
    • ψs(x)exp(iα)cos(ksx2z0)
  • intensity of the beam
    • |ψs(x)|2cos2=12[1+cos(2πsxαz0)]

interpreting diffraction by two slits

  • in the quantum mechanics paradigm, there is no specific size to the photon or electron

  • the act of the electron or photon hitting the screen causes a measurement to be made
    • the wavefunction collapses into one with a definite position
      • whose probability is given by the born’s rule
  • the establishment of which slit the electron goes through is meaningless
    • we can either have the interference pattern or know which slit the electron went through