[QMSE] W03 - Finite Potential Well
potential well problems
- particles in a finite well
- a common practical problem when designing various modern optoelectronic devices
- harmonic oscillator problem
- particle in a parabolic shaped well
- occurs in real world oscillating systems
- will explore only non oscillating parts
- both problems will be solved mathematically
- math more involved than particle in a box problem
- the analytic solutions offer insight that is useful in practical QM systems
finite potential well
- consider an electron in a finite depth well
- only a finite number of the energy levels exist within the limits of the well
- because of the finite height of the well
- these energy levels have sinusoidal solutions
- due to finite height of walls
- the solutions penetrate the walls
- non-zero at walls, unlike infinite height wells
- higher energy solutions penetrate further into the walls
- each higher energy has one zero crossing that the lower one
- similar to the infinite height walls
note
- this problem is att the limit of complexity for analytical solutions
- more complicated problems are solved numerically
setup
- height of the potential barrier is \( V_0 \)
- potential energy at bottom is \(0\)
- thickness of the well is \( L_z \)
- position origin \( 0 \) is halfway along the thickness
- such that the well walls are at \( -\frac{L_z}{2} \) and \( \frac{L_z}{2} \)
assumptions
- for an eigenenergy \(E\) for which there is a solution
- the solution has to take the form of a sinusoid in the middle of the well
- and has to be exponentially decaying on both sides of the walls
- the exponentially growing sides are discarded as it doesn’t agree with current understand of physics
- the particle would not be in the middle if these are not dropped according to current assumptions
energy functions
- for some eigenenergy \(E\)
- with \( k = \sqrt{\frac{2mE}{h^2}} \)
- \(k\): magnitude in the middle of the well
- with \( \kappa = \sqrt{ \frac{2m(V_0 - E)}{h^2} } \)
- \(\kappa\): exponential decay constant for wave in the wall barrier
- with \( k = \sqrt{\frac{2mE}{h^2}} \)
- for \( z < -\frac{L_z}{2} \)
- \( \psi{(z)} = G \exp{(\kappa z)} \)
- for \( -\frac{L_z}{2} < z < \frac{L_z}{2} \)
- \( \psi{(z)} = A \sin{(kz)} + B \cos{(kz)} \)
- for \( z > \frac{L_z}{2} \)
- \( \psi{(z)} = F \exp{(-\kappa z)} \)
boundary conditions
- needed to solve for unknown coefficients
- constants: \( A, B, F \) and \( G \)
- atleast three has to obtained by solving boundary conditions
- the fourth is found by normalization
-
using continuity of wave at boundaries:
-
@ \( z = \frac{L_z}{2} \): \[ \begin{align} \psi{\left( \frac{L_z}{2} \right)} & = F \exp{ \left( \frac{-\kappa L_z}{2} \right) } \\
& = A \sin{\left( \frac{k L_z}{2} \right)} + B \cos{\left( \frac{k L_z}{2} \right)} \\
\end{align} \] - picking substitutions to consolidate the math:
\[ \begin{align}
X_L & = \exp{\left( \frac{-\kappa L_z}{2} \right)} \rightarrow \text{ the exponential part } \\
S_L & = \sin{\left( \frac{-\kappa L_z}{2} \right)} \rightarrow \text{ the sinusoidal part } \\
C_L & = \cos{\left( \frac{-\kappa L_z}{2} \right)} \rightarrow \text{ the co-sinusoidal part } \\
\end{align} \] - plugging it back into the b.c. equation gives
\[ \begin{align}
FX_L & = AS_L + BC_L \\
\end{align} \]
- @ \( z = -\frac{L_z}{2} \):
- using the above substitutions in the wave-equations
\[ \begin{align}
GX_L & = -AS_L + BC_L \\
\end{align} \]
- using the above substitutions in the wave-equations
\[ \begin{align}
GX_L & = -AS_L + BC_L \\
-
-
using continuity of wave slope at boundaries:
-
@ \( z = \frac{L_z}{2} \): \[ \begin{align} -\frac{\kappa}{k}GX_L = AC_L - BS_L \end{align} \]
-
@ \( z = -\frac{L_z}{2} \): \[ \begin{align} \frac{\kappa}{k}GX_L = AC_L + BS_L \end{align} \]
-
consolidating results of applying boundary conditions
\[ \begin{align}
GX_L & = -AS_L + BC_L \tag{1} \\
FX_L & = AS_L + BC_L \tag{2}\\
-\frac{\kappa}{k}GX_L & = AC_L - BS_L \tag{3}\\
\frac{\kappa}{k}GX_L & = AC_L + BS_L \tag{4}\\
\end{align}
\]
compatible solutions search
-
adding equations (1) and (2) \[ \begin{align} GX_L & = -AS_L + BC_L \tag{1} \\
FX_L & = AS_L + BC_L \tag{2}\\
\\
\text{ gives: } & \\
2BC_L & = (F+G)X_L \tag{5}\\
\end{align} \] -
subtracting equations (3) from (4) \[ \begin{align} -\frac{\kappa}{k}FX_L & = AC_L - BS_L \tag{3} \\
\frac{\kappa}{k}GX_L & = AC_L + BS_L \tag{4}\\
\\
\text{ gives: } & \\
2BS_L & = \frac{\kappa}{k}(F+G)X_L \tag{6} \\
\end{align} \]
- case 1: consider \( F \neq G \)
- divide (6) by (5)
\[ \begin{align}
2BS_L & = \frac{\kappa}{k}(F+G)X_L \tag{6} \\
2BC_L & = (F+G)X_L \tag{5}\\
\\
& \text{ (6) divided by (5) gives: } \\
\tan\left( \frac{kL_z}{2} \right) & = \frac{\kappa}{k} \tag{7} \\
\end{align} \]- (7) is the condition for eigenvalues
-
subtracting (1) from (2) \[ \begin{align} FX_L & = AS_L + BC_L \tag{2}\\
GX_L & = -AS_L + BC_L \tag{1} \\
\\
\text{ gives: } & \\
2AS_L & = (F-G)X_L \tag{8}\\
\end{align} \] - adding (3) and (4)
\[ \begin{align}
-\frac{\kappa}{k}FX_L & = AC_L - BS_L \tag{3} \\
\frac{\kappa}{k}GX_L & = AC_L + BS_L \tag{4}\\
\\
\text{ gives: } & \\
2AC_L & = -\frac{\kappa}{k}(F-G)X_L \tag{9} \\
\end{align} \]
- divide (6) by (5)
\[ \begin{align}
2BS_L & = \frac{\kappa}{k}(F+G)X_L \tag{6} \\
- still keeping mind \( F \neq G \)
- divide (9) by (8)
\[ \begin{align}
2AC_L & = -\frac{\kappa}{k}(F-G)X_L \tag{9} \\
2AS_L & = (F-G)X_L \tag{8} \\
\\
\text{ gives: } & \\
-cot{\left( \frac{kL_z}{2} \right)} & = \frac{\kappa}{k} \tag{10} \\
\end{align} \]- (10) is the condition for eigenvalues
- divide (9) by (8)
\[ \begin{align}
2AC_L & = -\frac{\kappa}{k}(F-G)X_L \tag{9} \\
- when \( F = G \)
- leaves (9)
- but not (10)
- when \( F = -G \)
- leaves (10)
- but not (9)
- other than these two cases
- (10) and (9) eigenvalue conditions are contradictory
- so the two eigenvalue conditions are
- \( F = G \) \[ \tan{\left( \frac{kL_z}{2} \right)} = \frac{\kappa}{k} \tag{7} \]
- \( F = -G \) \[ -cot{\left( \frac{kL_z}{2} \right)} = \frac{\kappa}{k} \tag{10} \]
exploring condition 1. \( F=G \)
- the corresponding eigenvalue condition is:
\[ \begin{align}
\tan{\left( \frac{kL_z}{2} \right)} & = \frac{\kappa}{k} \tag{7} \\
\text{ is derived from dividing } & (8) \text{ by } (9)\\
2AS_L & = (F-G)X_L \tag{8} \\
2AC_L & = -\frac{\kappa}{k}(F-G)X_L \tag{9} \\\
\end{align} \]- here \(F = G \) sets the RHS of both (8) and (9) to \(0\)
- \(S_L\) (sine) and \(C_L\) (cosine) cannot both be \(0\) at the same time
- so \( A = 0\)
- inside the well: \( \psi(z) \propto \cos{(kz)} \)
- since: \( \psi{(z)} = A \sin{(kz)} + B \cos{(kz)} \) and \(A = 0\)
- even functions set
exploring condition 2. \( F = -G \)
- the corresponding eigenvalue condition is:
\[ \begin{align}
-\cot{\left( \frac{kL_z}{2} \right)} & = \frac{\kappa}{k} \tag{10} \\
\text{ is derived from dividing } & (5) \text{ by } (6)\\
2BC_L & = \frac{\kappa}{k}(F+G)X_L \tag{5} \\\
2BS_L & = (F+G)X_L \tag{6} \\\
\end{align} \]- here \(F = - G \) sets the RHS of both (5) and (6) to \(0\)
- \(S_L\) (sine) and \(C_L\) (cosine) cannot both be \(0\) at the same time
- so \( B = 0\)
- inside the well: \( \psi(z) \propto \sin{(kz)} \)
- since: \( \psi{(z)} = A \sin{(kz)} + B \cos{(kz)} \) and \(B = 0\)
- odd functions sets
nature of solutions
- without solving for the actual eigenenergies, the nature of the solution waves in the finite well are as follows
eigenwaves
-
to find eigenenergies, \(k\) and \(\kappa\) values have to be found, using \[ \begin{align} \tan{\left( \frac{kL_z}{2} \right)} & = \frac{\kappa}{k} \tag{7} \\
-\cot{\left( \frac{kL_z}{2} \right)} & = \frac{\kappa}{k} \tag{10} \\
\end{align} \] -
change to ‘dimensionless’ units
borrowing the eigen energy expression
- of the first level in the ‘infinite’ potential well width \( L_z \)**
\[ \begin{align}
E_{1}^{\infty} = \frac{h^2}{2m} \left( \frac{\pi}{L_z} \right)^2\\
\end{align} \]- as a reference energy unit
- so with this reference energy unit
\[ \begin{align}
\epsilon = \frac{E}{E_1^\infty}
\end{align}
\]
- \( \epsilon \) : leading to dimensionless eigenenergy
- dimensionless barrier height with respect to the same reference energy unit \[ \begin{align} \nu_0 = \frac{V_0}{E_1^\infty} \end{align} \]
- also, expressing \(k\) and \(\kappa\) in terms of these energy units
- k:
\[ \begin{align}
k & = \sqrt{ \frac{2mE}{h^2} } \\
k & = \left( \frac{\pi}{L_z} \right) \sqrt{ \frac{E}{E_1^\infty} } \\
k & = \left( \frac{\pi}{L_z} \right) \sqrt{ \epsilon } \\
\end{align} \] - \( \kappa\):
\[ \begin{align}
\kappa & = \sqrt{ \frac{2m(V_0-E)}{h^2} } \\
\kappa & = \left( \frac{\pi}{L_z} \right) \sqrt{ \frac{V_0 - E}{E_1^\infty} } \\
\kappa & = \left( \frac{\pi}{L_z} \right) \sqrt{ \nu_0 - \epsilon } \\
\end{align} \]
- k:
\[ \begin{align}
k & = \sqrt{ \frac{2mE}{h^2} } \\
- so, the ratio chunk \( \frac{\kappa}{k} \): \[ \frac{\kappa}{k} = \sqrt{\frac{V_0 - E}{E}} = \sqrt{ \frac{\nu_0 - \epsilon}{\epsilon} } \]
- the expression chunk \( \frac{kL_z}{2} \):
\[ \frac{kL_z}{2} = \frac{\pi}{2} \sqrt{ \frac{E}{E_1^\infty} } = \frac{ \pi }{ 2 } \sqrt{ \epsilon } \]
- so \[ \tan{ \left( \frac{kL_z}{2} \right) } = \frac{\kappa}{k} \rightarrow \text{ (F = G eigenvalue condition) } \]
- becomes
\[ \begin{align}
\tan{ \left[ \frac{\pi}{2} \sqrt{\epsilon} \right] } & = \sqrt{ \frac{\nu_0 - \epsilon}{\epsilon} } \\
\sqrt{ \epsilon } \tan{ \left[ \frac{\pi}{2} \sqrt{\epsilon} \right] } & = \sqrt{ \left( \nu_0 - \epsilon \right) } \tag{11} \\
\end{align} \]
- the expression chunk \( \frac{\kappa L_z}{2} \):
\[ \frac{\kappa L_z}{2} = \frac{\pi}{2} \sqrt{ \frac{V_0 - E}{E_1^\infty} } = \frac{ \pi }{ 2 } \sqrt{ \nu_0 - \epsilon } \]
- similarly \[ -\cot{ \left( \frac{kL_z}{2} \right) } = \frac{\kappa}{k} \rightarrow \text{ (F = - G eigenvalue condition) } \]
- becomes
\[ \begin{align}
-\cot{ \left[ \frac{\pi}{2} \sqrt{\epsilon} \right] } &= \sqrt{ \frac{\nu_0 - \epsilon}{\epsilon} } \\
-\sqrt{ \epsilon } \cot{ \left[ \frac{\pi}{2} \sqrt{\epsilon} \right] } & = \sqrt{ \left( \nu_0 - \epsilon \right) } \tag{12} \\
\end{align} \]
graphical solution
- needs a computational graphing tool with ability to view and record points of intersection between curves
- consider the reduced equations (11) and (12) from above:
\[ \begin{align}
\sqrt{ \epsilon } \tan{ \left[ \frac{\pi}{2} \sqrt{\epsilon} \right] } & = \sqrt{ \left( \nu_0 - \epsilon \right) } \tag{11} \\
-\sqrt{ \epsilon } \cot{ \left[ \frac{\pi}{2} \sqrt{\epsilon} \right] } & = \sqrt{ \left( \nu_0 - \epsilon \right) }\tag{12} \\
\end{align}
\]
- for a given specific well depth \( \nu_0 \) plot of \(RHS\) \( \sqrt{ \left( \nu_0 - \epsilon \right) } \) is
- \( \nu_0 = 2 \)
- \( \nu_0 = 5 \)
- \( \nu_0 = 8 \)
- \( \nu_0 = 2 \)
- plotting LHS of equations (11) and (12)
\[ \begin{align}
\sqrt{ \epsilon } \tan{ \left( \frac{\pi}{\epsilon} \sqrt{\epsilon} \right) }: \textbf{ red } \\
-\sqrt{ \epsilon } \cot{ \left( \frac{\pi}{\epsilon} \sqrt{\epsilon} \right) }: \textbf{ blue } \\
\end{align} \]- the solutions for the values of \( \epsilon \)
- is found by the intersection of the specified \(\nu_0\) curve and the \(RHS\) equations
- explicitly, for \( \nu_0 = 8 \)
- the values of \( \epsilon \) are
- \( 0.663, 2.603, 5.609 \)
- the values of \( \epsilon \) are
- the solutions for the values of \( \epsilon \)
- solutions:
comparison to infinite well solutions
- compared to solutions for the infinitely deep well of the same width
- finite well solutions are at lower energy
- the heights lesser since they have lesser kinetic energy
- due to tunneling into the potential barriers
- finite well solutions are at lower energy